
RSA CRYPTOSYSTEM: AN ANALYSIS AND PYTHON SIMULATOR

by

Cescily Nicole Metzgar

Honors Thesis

Appalachian State University

Submitted to the Department of Mathematical Sciences

and The Honors College

in partial fulfillment of the requirements for the degree of

Bachelor of Science

May, 2017

Approved by:

Rick Klima, Ph.D., Thesis Director

Dee Parks, Ph.D., Second Reader

Vicky Klima, Ph.D., Honors Director, Department of Mathematical Sciences

Ted Zerucha, Ph.D., Interim Director, The Honors College

Abstract

This project involves an exploration of the RSA cryptosystem and the mathematical con-

cepts embedded within it. The first goal is to explain what the cryptosystem consists of,

and why it works. Additional goals include detailing some techniques for primality test-

ing, discussing integer factorization, modular exponentiation, and digital signatures, and

explaining the importance of these topics to the security and efficiency of the RSA cryp-

tosystem. The final goal is to implement all of these components into a full simulation of

the entire RSA cryptosystem using the Python programming language.

Contents

1 Background 1

2 How RSA Works 1

3 Why RSA Works 10

4 Why RSA is Public-Key 11

5 Primality Testing 13

6 Integer Factorization 17

7 Modular Exponentiation 21

8 Digital Signatures 23

9 Python Simulator Description 26

10 Python Simulator Code 30

References 38

1 Background

The RSA cryptosystem was created by three MIT professors, Ron Rivest, Adi Shamir, and Len

Adleman and published in an article named A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems in 1978. While the cryptosystem is named for this trio of mathe-

maticians, it is less widely known that a man named Clifford Cocks had actually discovered

the algorithm first while working in a classified environment for the British cryptologic agency

GCHQ. Clifford Cock’s discovery of the RSA algorithm was revealed more than two decades

after the publication by Rivest, Shamir and Adleman [Klima, Sigmon].

RSA was the world’s first public-key cryptosystem, which is part of why the algorithm is so

well-known and popular. Being a public-key cryptosystem stems from being asymmetric. This

means that the encryption key is made public knowledge and does not in any way give clues

to an outsider or even the person sending the message about how to obtain the decryption key.

In a more formalized assertion, a public key cryptosystem is a system in which the encryption

function f can be public knowledge without revealing f−1. This inability to determine f−1

from the encryption function f comes from the practical difficulty of factoring large primes

[Klima, Sigmon]. This factorization problem allows RSA to be an extremely secure cryptosys-

tem. Because of its security it is most widely used today to provide privacy and ensure the

authenticity of digital data. RSA is implemented by web servers and browsers to secure web

traffic, it is used to ensure privacy and authenticity of email, and it is frequently used in elec-

tronic credit card payment systems. These are all applications in which security of digital data

is of extreme importance, which exemplifies the high level of security RSA can provide. While

RSA is extremely secure, the mathematics that underlie the system are fairly simple as will be

shown.

2 How RSA Works

It is important to note that RSA depends on the numerical conversion of a message. To do

this, one can map the letters of the alphabet to a corresponding element in the ring Z26. This

mapping can be outlined as follows: A 7→ 0, B 7→ 1, C 7→ 2, . . . , Z 7→ 25 [Klima, Sigmon].

The only setback to this method is that only capital letters can be used in creating messages to

1

send. To improve upon this method, ASCII representations of letters, symbols and spaces can

be used. With ASCII, lower and upper case letters have different numerical representations, so

messages converted using ASCII are able to use upper and lower case letters as well as spaces

and symbols. All of these elements within a message are preserved throughout the encryption

and decryption process. In the Python program included as part of this thesis, this is the

method used to convert strings of text to their numerical representations. Any way you do

it, you must convert the string of characters that make up your messages into a numerical

equivalent. We let this numerical message be x. To get started with the RSA encryption

algorithm, we must first choose two distinct prime numbers p and q. We then must determine

n = pq as well as m = (p−1)(q−1). Next we would need to determine an encryption exponent

a ∈ Z∗
m which satisfies gcd(a,m) = 1. A decryption exponent b ∈ Z∗

m will also need to be found

that satisfies ab = 1 mod m. We cannot choose any number as our a because in order for RSA

to work, a must be relatively prime to m. This in turn allows us to be able to find a value of

b that when multiplied by a yields the value 1 mod m. These two conditions on a and b are

extremely important. When met, they force the following equation to be true: xab = x mod n.

This equation shows that once we raise a plaintext message to the encryption exponent, we

can raise the resulting ciphertext to the decryption exponent then reduce mod n and the same

plaintext message x will be the end result [Klima, Sigmon].

Finding an encryption exponent a that is relatively prime to a chosen m is fairly straightfor-

ward. Once an a is found, finding the decryption exponent b requires the use of the Euclidean

algorithm. The Euclidean algorithm can also be used to confirm that your choice of a is indeed

relatively prime to m as well. So, knowing the Euclidean algorithm and how to implement it is

fairly important when looking for parameters that will allow the RSA algorithm to work.

Suppose you want to receive RSA encrypted messages, so you must first generate the keys.

For the sake of this first example very small numbers will be used to show how the Euclidean

algorithm works to help choose the encryption and decryption exponents. Suppose you select

primes p = 47 and q = 61. This would give n = pq = 47 · 61 = 2867. You must then calculate

m = (p−1)(q−1), which is (47−1) ·(61−1), or 46 ·60 = 2760. Now you would need to establish

an a such that a and 2760 have no common divisors greater than 1. Suppose you choose a = 67.

Now you can use the Euclidean algorithm to prove that this choice of a is actually relatively

2

prime to m as follows. Begin by dividing m by a, while noting the quotient and remainder.

This process will then be repeated, each time using the divisor from the previous step and then

dividing that by the remainder from the previous step. The last nonzero remainder in this

process is the gcd of a and m:

2760 = 67(41) + 13

67 = 13(5) + 2

13 = 2(6) + 1

2 = 1(2) + 0.

Because the last nonzero remainder is 1, the gcd of 67 and 2760 is 1, and so the two numbers are

relatively prime, which justifies the choice of a. Now we can find a valid decryption exponent.

We are looking for a value of b that satisfies ab = 1 mod m. In other words we need a value of b

such that 67b = 1 mod 2760. The Euclidean algorithm equations used to validate our choice of

a can also be used to find b as well. The Euclidean algorithm equations can be rewritten in a

way that allows us to work backwards to find the multiplicative inverse of our a mod m. This

can be done as follows:

1 = 13− 2(6)

= 13− (67− 13(5))(6)

= −67(6) + 13(31)

= −67(6) + (2760− 67(41))(31)

= 2760(31) + 67(−1277).

The last line gives 2760(31)+67(−1277) = 1, which can be reduced mod 2760, giving the result

67(−1277) = 1 mod 2760. This tells us that −1277 is a multiplicative inverse of 67 mod 2760.

However, we do not want to use a negative number for b, but since we are working mod 2760,

we can see that −1277 mod 2760 = 1483. This means that 1483 can work as our decryption

exponent b. Now that we have determined valid encryption and decryption exponents, we have

3

obtained all the information we need to make the encryption exponent and modulus n public

and begin receiving encrypted messages that only our decryption exponent b can decrypt. We

can now do some examples using RSA with our parameters n = 2867, encryption exponent

a = 67, and decryption exponent b = 1483.

Example 1: Encryption

Suppose someone wants to send us a message, specifically the message URGENT: Meet at dusk!.

First, the sender must convert their message into its numerical equivalent. This can be done

using the ASCII correspondences shown in Table 1. Using this method, the message URGENT:

Meet at dusk! converts into the following string of numbers:

085082071069078084058032077101101116032097116032100117115107033.

At this point, the sender will use the encryption calculation to encrypt the message. Recall that

x represents the message to be encrypted. The encryption calculation is: xa mod n. Because

the message is such a large number, we must split it into pieces and do separate calculations

in order to complete the encryption process. The pieces of the message to be encrypted cannot

be bigger than n = 2867 in this example, or else they could not be decrypted correctly, and

so we will split the message into groups of three digits. In other words, we must encrypt one

character at a time. This splits our plaintext into the groups 085, 082, 071, 069, 078, 084, 058,

032, 077, 101, 101, 116, 032, 097, 116, 032, 100, 117, 115, 107, 033. Now the sender can take

these pieces of the plaintext and use the encryption calculation to find the ciphertext as follows:

08567 mod 2867 = 1533

08267 mod 2867 = 2663

07167 mod 2867 = 1978

06967 mod 2867 = 2595

07867 mod 2867 = 884

08467 mod 2867 = 525

05867 mod 2867 = 1168

03267 mod 2867 = 578

4

Decimal Representation Character Decimal Representation Character

32 Space 80 P

33 ! 81 Q

34 ” 82 R

35 # 83 S

36 $ 84 T

37 % 85 U

38 & 86 V

39 ’ 87 W

40 (88 X

41) 89 Y

42 * 90 Z

43 + 91 [

44 , 92 \
45 – 93]

46 . 94 ˆ

47 / 95

48 0 96 ‘

49 1 97 a

50 2 98 b

51 3 99 c

52 4 100 d

53 5 101 e

54 6 102 f

55 7 103 g

56 8 104 h

57 9 105 i

58 : 106 j

59 ; 107 k

60 < 108 l

61 = 109 m

62 > 110 n

63 ? 111 o

64 @ 112 p

65 A 113 q

66 B 114 r

67 C 115 s

68 D 116 t

69 E 117 u

70 F 118 v

71 G 119 w

72 H 120 x

73 I 121 y

74 J 122 z

75 K 123 {
76 L 124 |
77 M 125 }
78 N 126 ∼
79 O

Table 1: ASCII Correspondences

5

07767 mod 2867 = 2699

10167 mod 2867 = 1058

10167 mod 2867 = 1058

11667 mod 2867 = 1091

03267 mod 2867 = 578

09767 mod 2867 = 2794

11667 mod 2867 = 1091

03267 mod 2867 = 578

10067 mod 2867 = 1286

11767 mod 2867 = 748

11567 mod 2867 = 1726

10767 mod 2867 = 710

03367 mod 2867 = 613.

The sender can then send the string of ciphertext numbers 1533, 2663, 1978, 2595, 884, 525,

1168, 578, 2699, 1058, 1058, 1091, 578, 2794, 1091, 578, 1286, 748, 1726, 710, 613 to us. It is

important to note that with such a small value of n forcing such small groupings of plaintext

digits, this particular encryption is insecure, as it is vulnerable to being broken by frequency

analysis. In practice, the primes chosen to form n are extremely large and would help to

eliminate this insecurity.

Example 1: Decryption

After we receive the encrypted message formed above, we can then decrypt the message using

the decryption key. This is how the decryption process works. Suppose we refer to the encrypted

message as c. The decryption calculation is cb mod 2867. This must be done for each of the

ciphertext numbers in order to reveal the message as follows:

15331483 mod 2867 = 085

26631483 mod 2867 = 082

6

19781483 mod 2867 = 071

25951483 mod 2867 = 069

8841483 mod 2867 = 078

5251483 mod 2867 = 084

11681483 mod 2867 = 058

5781483 mod 2867 = 032

26991483 mod 2867 = 077

10581483 mod 2867 = 101

10581483 mod 2867 = 101

10911483 mod 2867 = 116

5781483 mod 2867 = 032

27941483 mod 2867 = 097

10911483 mod 2867 = 116

5781483 mod 2867 = 032

12861483 mod 2867 = 100

7481483 mod 2867 = 117

17261483 mod 2867 = 115

7101483 mod 2867 = 107

6131483 mod 2867 = 027.

If we convert these decrypted numbers back into characters according the ASCII correspon-

dences in Table 1, we see that it converts back into the original plaintext URGENT: Meet at

dusk!.

In Example 1 the size of our encrypted blocks was only three digits, meaning that each

character was encrypted and decrypted separately. This is ineffective and insecure, since en-

crypting one character at a time yields a substitution cipher which can be easily broken through

frequency analysis. To really take advantage of the security RSA can offer, we must encrypt

7

larger groupings of digits. However, in order to be decrypted, the groupings encrypted cannot

be larger than the value of n. So, in general, taking advantage of the security RSA can offer

requires a large value for n. In the following we will do this same example, but with larger

groupings in order to show the encryption and decryption process with more secure parameters.

Example 2: Encryption

We will use the same plaintext in this example, URGENT: Meet at dusk!, which converted

under the ASCII correspondences into the following string of numbers:

085082071069078084058032077101101116032097116032100117115107033.

In this example we will use primes p = 1009 and q = 1511, which give n = 1524599 and

m = 1522080. A possible value for a is 15221, which we can confirm is a valid encryption

exponent as follows:

1522080 = 15221(99) + 15201

15221 = 15201(1) + 20

15201 = 20(760) + 1

20 = 1(20) + 0.

Since the last nonzero remainder is 1, the gcd of 15221 and 1522080 is 1, and so the two numbers

are relatively prime, justifying our choice of a. We can rewrite these equations to find a valid

value for b as follows:

1 = 15201− 20(760)

= 15201− (15221− 15201(1))(760)

= −15221(760) + 15201(761)

= −15221(760) + (1522080− 15221(99))(761)

= 1522080(761) + 15221(−76099).

The last line gives 1522080(761)+15221(−76099) = 1, which can be reduced mod 1522080, giv-

ing 15221(−76099) = 1 mod 1522080. This tells us that a value that works for b is −76099 mod

8

1522080 = 1445981. Now we can begin the encryption process. With our value of n = 1524599,

we can make plaintext groups of two characters for the encryption and decryption process,

which will have equivalent numerical lengths of 6 digits. With two characters in each group,

our plaintext numbers will be 085082, 071069, 078084, 058032, 077101, 101116, 032097, 116032,

100117, 115107, 033120. Since there are an odd number of characters in our message, our last

group only had one character. To maintain consistency with the group size, we have added a

single random character to the end of our message, namely x. We can now encrypt our message

via the following calculations:

08508215221 mod 1524599 = 508128

07106915221 mod 1524599 = 259410

07808415221 mod 1524599 = 1505416

05803215221 mod 1524599 = 1516259

07710115221 mod 1524599 = 812195

10111615221 mod 1524599 = 552080

03209715221 mod 1524599 = 743297

11603215221 mod 1524599 = 1127324

10011715221 mod 1524599 = 978406

11510715221 mod 1524599 = 336239

03312015221 mod 1524599 = 1330515.

Thus the ciphertext is the list of numbers 1459719, 792327, 729432, 475592, 528380, 999910,

1080674, 55252, 943425, 255531, 633201.

Example 2: Decryption

After we receive the encrypted message formed above, we can then decrypt the message using

the decryption key as follows:

5081281445981 mod 1524599 = 085082

9

2594101445981 mod 1524599 = 071069

15054161445981 mod 1524599 = 078084

15162591445981 mod 1524599 = 058032

8121951445981 mod 1524599 = 077101

5520801445981 mod 1524599 = 101116

7432971445981 mod 1524599 = 032097

11273241445981 mod 1524599 = 116032

9784061445981 mod 1524599 = 100117

3362391445981 mod 1524599 = 115107

13305151445981 mod 1524599 = 033120.

If we convert these decrypted numbers back into characters according the ASCII correspon-

dences in Table 1, we see that it converts back into the original plaintext URGENT: Meet at

dusk!.

Example 2 eliminates the possibility for cryptanalysis using frequency analysis and is in

general more secure than Example 1. Example 2 is, however, still on an extremely small scale

compared to the parameters used in actual practice. While not obvious how, it would not

take much time for an outsider to find the prime factors p and q that created our n, which

would in turn expose the algorithm to outsiders. To obtain the high level of security RSA is

known for, modern applications use extremely large primes that are practically impossible to

find from n, even with immense computing power. As computing power is ever evolving and

improving, so has the minimum key length to consider an RSA algorithm truly secure. Today,

2048, 3072 or 4096 bit keys are typically used. This corresponds to about 617, 925, and 1233

digits, respectively. This obviously makes our 7 digit n seem very minuscule.

3 Why RSA Works

Several fundamental theorems comprise the basic foundation for why the RSA cryptosystem

works. Among these are Lagrange’s Theorem and Fermat’s Little Theorem.

10

Lagrange’s Theorem: For a finite group G with identity element e, if |G| = k and g ∈ G,

then gk = e.

Fermat’s Little Theorem is a corollary to Lagrange’s Theorem, in the case where G is the set

of nonzero elements in Zp for prime p under multiplication mod p. Since it is known that the

nonzero elements in any finite field form a group under multiplication, and Zp for prime p is a

finite field, it follows that G = Z∗
p is a group under multiplication mod p.

Fermat’s Little Theorem: Let p be a prime, and suppose x ∈ Z satisfies gcd(x, p) = 1. Then

xp−1 = 1 mod p.

Proof : Consider the group Z∗
p for prime p under multiplication mod p. Note that |Z∗

p| = p− 1,

and Z∗
p has identity element e = 1. For any x ∈ Z that satisfies gcd(x, p) = 1, it follows that

x is not a multiple of p, and so y = x mod p ∈ Z∗
p. But then by Lagrange’s Theorem, we have

xp−1 = yp−1 mod p = 1 mod p.

Finally, the following theorem verifies the mathematical fact that makes the RSA cryptosystem

work.

Theorem: Let p and q be distinct primes, and suppose n = pq and m = (p − 1)(q − 1). If a

and b are integers with ab = 1 mod m, then xab = x mod n for all x ∈ Zn.

Proof : If ab = 1 mod m, then ab = 1 + km for some k ∈ Z, and for all x ∈ Zn the following

will hold:

xab = x1+km = x(xkm) = x(xp−1)k(q−1).

If gcd(x, p) = 1, then by Fermat’s Little Theorem we know that xp−1 = 1 mod p. Thus,

xab = x(1)k(q−1) mod p = x mod p. Also, if gcd(x, p) 6= 1, then x = 0 mod p, and certainly

xab = x mod p. Similarly, xab = x mod q for all x ∈ Z. Thus, p|xab − x and q|xab − x, and so

pq|xab − x. That is, n|xab − x, or, equivalently, xab = x mod n [Klima, Sigmon].

4 Why RSA is Public-Key

The fact that RSA is a public-key cryptosystem means users of an RSA cipher can assume

that almost everything related to the cipher is public knowledge, including not just the form

11

of the encryption calculations, but the fixed parameters in the encryption calculations as well.

This means that if an outsider were to intercept an RSA encrypted ciphertext, they could know

not only that each ciphertext integer was formed as xa mod n for some plaintext integer x and

positive integers a and n, but they could actually know the values of a and n [Klima, Sigmon].

This may seem like an extreme threat to the security of the RSA cryptosystem. However, with

sufficiently large choices for the primes p and q used to form n = pq, this is not the case.

While one may be skeptical of the security of a cryptosystem that offers so much information

to the public, we must think about what it is that makes RSA as secure as it is in practice.

Even in possession of a and n, a piece of information necessary for decryption that an outsider

would be missing is the decryption exponent b. As we have seen, b is found as a multiplicative

inverse of a mod m, i.e., ab = 1 mod m. The only way an outsider could crack the system

is to somehow manage to find such a value of b from only the knowledge of a and n. But to

find b, the outsider would have to first find m to know what modulus to use in the equation

ab = 1 mod m. And to find m = (p − 1)(q − 1), the outsider would need to know p and q. It

is the difficulty of finding p and q from n that provides RSA with its extremely high level of

security. The sad reality for outsiders is that with extremely large values for p and q, factoring

n = pq is essentially impossible. For example, if p and q were both hundreds of digits long, then

the fastest known factoring algorithms would in general take millions of years to factor n = pq,

even when programmed on a computer that could perform millions of operations per second

[Klima, Sigmon]. So, even with a and n being public knowledge, an outsider should not be

able to determine the decryption exponent b. This is precisely why the RSA cryptosystem is a

public-key system. Factoring n is not a problem for the intended recipient of an RSA ciphertext

though, since as in our Examples 1 and 2, the recipient starts the process by choosing p and q

used to form n. And of course the tremendous benefit to RSA being public-key to the users of

an RSA cipher is that they do not have to figure out a way to securely exchange an encryption

exponent and modulus for the cipher. Rather, they can just make them public knowledge.

Since RSA’s security relies on extremely large primes, it is important to note that by Euclid’s

Theorem we know that the primes are unbounded in size and number. This theorem tells us that

even with greater and greater advances of modern computing power, there will always be larger

and larger primes that we can use to continue ensuring the security of the RSA cryptosystem.

12

Theorem (Euclid’s Theorem): There are infinitely many primes.

Proof : For the sake of contradiction, suppose there are finitely many primes, with the following

being a complete list: p1, p2, . . . , pn. Assume without loss of generality that p1 < p2 < · · · < pn.

Consider M = p1p2 · · · pn + 1. Then M is certainly not prime, since it is larger than pn. Since

M is not prime, it must be divisible by at least one of the primes in our complete list, say pj .

That is, pj divides M . But pj certainly divides M−1, and thus it must be the case that pj = 1.

This is a contradiction, however, since we are assuming that pj is prime. →← Therefore, there

cannot be only finitely many primes, and thus there must be infinitely many primes.

5 Primality Testing

The security of RSA relies on the use of very large primes, however finding primes large enough

to make RSA so secure is not particularly easy. Motivated in part by the development of

public-key cryptosystems like RSA, much research has been done over the past few decades

in the area of primality testing. Contrary to the name, primality testing usually focuses on

criteria that prove a number is not prime rather than criteria that prove a number is prime

[Klima, Sigmon]. In failing to find evidence that a number is not prime, we can then trust

that it is prime. This is how most methods for primality testing work. The most direct and

accurate method for testing the primality of an odd integer n is to find nontrivial factors of n

by trial and error. This could be done systematically by checking if m|n as m takes on odd

integer values starting with m = 3 and ending when m reaches
√
n [Klima, Sigmon]. This

method, however, is extremely inefficient if n is a very large number. For instance, if we were

testing n = 1697835486935464783165465534684354687 for primality, we would have to compute

1.30301016379×1018 divisions. This is a problem because we need very large primes for RSA to

be secure, but we also want to be as efficient as possible when developing the RSA algorithm.

One simple primality test is based on Fermat’s Little Theorem. If n is a prime integer, then

as a consequence of Fermat’s Little Theorem it will be true that an−1 = 1 mod n for all a ∈ Z∗
n.

As a result, if an−1 6= 1 mod n for any a ∈ Z∗
n, we can conclude that n is definitely not prime.

Thus, we can test the primality of an integer n by checking if an−1 = 1 mod n for some values

of a in Z∗
n, with the power of the test increasing as we check more values of a [Klima, Sigmon].

13

This fairly simple primality test is the one used in the Python simulator created for this thesis.

The simulator tests about 40 values of a, yielding results virtually certain to be accurate yet

still very efficient. A drawback to this primality test is that there are some values of a for

which an−1 = 1 mod n even when gcd(a, n) = 1 and n is not prime. In such cases, n is called

a pseudoprime to the base a. This may seem worrisome as to the accuracy of the Fermat

primality test, but pseudoprimes are extremely scarce compared to primes. For example, there

are only 245 pseudoprimes to the base 2 less than one million, while there are 78,498 primes

less than one million. Also, most pseudoprimes to the base 2 are not pseudoprimes to many

other bases [Klima, Sigmon]. This means that if a number is pseudoprime to the base 2 but

not to another base a, the Fermat test would still identify the number as not prime as long as

that a value is checked, hence the increased accuracy with the inclusion of more a values.

However, there are nonprime integers n that are pseudoprime to every positive base a < n

with gcd(a, n) = 1. These numbers are called Carmichael numbers. There are 2163 Carmichael

numbers less than 25 billion [Klima, Sigmon]. As can be seen, these numbers are fairly rare.

Given a randomly chosen odd integer n less than 1017, the probability that n is a Carmichael

number is only a little over 1
1011

(about one in one hundred billion) [Rabin-Miller]. The smallest

Carmichael number is 561. Using 561 as a quick example, we can see that it is pseudoprime to

all of the following choices of a which satisfy gcd(a, n) = 1:

a = 2 =⇒ 2560 = 1 mod 561

a = 13 =⇒ 13560 = 1 mod 561

a = 40 =⇒ 40560 = 1 mod 561

a = 65 =⇒ 65560 = 1 mod 561.

Note that this is only 4 choices for a, but the same result will hold with any choice of a < n

with gcd(a, n) = 1.

Another well-known primality test is the Euler Test, which is based on the fact that if n

is an odd prime, an integer can have at most two square roots mod n. In particular, the only

square roots of 1 mod n are ±1. Thus, if a = 0 mod n, then a(n−1)/2 is a square root of a(n−1) =

1 mod n, and a(n−1)/2 = ±1 mod n. So, Euler’s test tells us that if a(n−1)/2 6= ±1 mod n for

14

some a with a 6= 0 mod n, then n is composite. The Euler test improves upon the Fermat

test. It is true that if the Fermat test finds that n is composite, the Euler test will as well.

However, the Euler test may find that n is composite even when the Fermat test fails to do

so. This can happen in the case of certain n values if n is an odd composite integer (other

than a prime power), because 1 will have at least 4 square roots mod n. In this case we can

have a(n−1)/2 = β mod n, where β 6= ±1 is a square root of 1. Then an−1 = 1 mod n. In

this situation, the Fermat Test (incorrectly) declares n a probable prime, but the Euler test

(correctly) declares n composite [Rabin-Miller]. Some of the Carmichael numbers that were

mentioned as issues for the Fermat test can actually be labeled as composite with the Euler

test. The following table shows a comparison of the Fermat and Euler tests with the seven

Carmichael numbers under 10000.

Number of a with Number of a with

n φ(n) an−1 = 1 mod n a(n−1) 2 = ±1 mod n

561 320 320 160

1105 768 768 364

1729 1296 1296 1296

2465 1792 1792 1792

2881 2160 2160 1080

6601 5280 5280 2640

8911 7128 7128 1782

In each case, the Fermat test will falsely identify the Carmichael number as prime because

an−1 = 1 mod n for every a with gcd(a, n) = 1, the number of which is given by φ(n). The

Euler test, however, identifies five of the seven Carmichael numbers as composite, if the right

values of a are tested. The two Carmichael numbers that cause the Euler test to fail, 1729 and

2465, are called absolute Euler pseudoprimes. There are fewer absolute Euler pseudoprimes than

Carmichael numbers, so the Euler test is considered more accurate than Fermat’s [Rabin-Miller].

Another primality test that is widely known is the Rabin-Miller test, that improves even on

Euler’s test. The limitation of the Euler test is that it does not go to any special effort to find

15

square roots of 1 different from ±1. The Rabin-Miller test does do this. In the Rabin-Miller

test, we use n − 1 = 2sm, with m odd and s ≥ 1. To start the Rabin-Miller test, we compute

am mod n. If am = ±1 mod n, we declare n a probable prime, and stop. This is because we

know that an−1 = (am)2
s

= 1 mod n, and we will not find a square root of 1, other than ±1, in

repeated squaring of am to get an−1. So, if am 6= ±1 mod n, we square am mod n to obtain a2m,

unless s = 1. If a2m = 1 mod n, we declare n composite, and stop. This is due to am being a

square root of a2m = 1 mod n, different from ±1. If a2m = −1 mod n, we declare n a probable

prime, and stop. This is because, similarly to the previous, we know that an−1 = 1 mod n,

and we will not find a square root of 1, other than ±1. If neither of these are the case, unless

s = 2, we square a2m mod n to obtain a2
2m. If a2

2m = 1 mod n, we declare n composite, and

stop. If a2
2m = −1 mod n, we declare n a probable prime, and stop. Otherwise we continue

in this manner until we either we stop the test, or we have computed a2
s−1m, and stopped if

a2
s−1m = a(n−1)/2 = ±1 mod n [Rabin-Miller].

If we take the Euler absolute pseudoprime 1729, with a = 671, the Rabin-Miller test proceeds

as follows. Since 1729−1 = 1728 = 26(27), then s = 6 and m = 27. Then we have the following:

67127 = 1084 mod 1729

67127(2) = 10842 mod 1729

= 1065 mod 1729

67127(2
2) = 10652 mod 1729

= 1 mod 1729.

The test will then declare n composite and terminate.

If we test a number that is in fact prime, say n = 104513, with a = 3, the Rabin-Miller test

proceeds as follows. Since n− 1 = 104512 = 26(1633), then s = 6 and m = 1633. Then:

31633 = 88958 mod n

31633(2) = 889582 mod n

= 10430 mod n

16

31633(2
2) = 104302 mod n

= 91380 mod n

31633(2
3) = 913802 mod n

= 29239 mod n

31633(2
4) = 292392 mod n

= 2781 mod n

31633(2
5) = 27812 mod n

= −1 mod n.

We could then conclude that n is a probable prime, but we might perform a few more tests

before we are truly convinced that n is actually prime.

Like the Fermat and Euler tests, the Rabin-Miller test has pseudoprimes, with the choices

of a with which the test declares a composite integer to be a probable prime. Rabin-Miller

pseudoprimes are called strong pseudoprimes. There are fewer strong pseudoprimes than Fermat

or Euler pseudoprimes. More importantly, there are no Rabin-Miller absolute pseudoprimes,

which are those pseudoprimes that pass an integer off as prime for every a value that can be

chosen [Rabin-Miller]. This is what makes the Rabin-Miller test so strong and one of the most

commonly used.

6 Integer Factorization

The security of RSA relies on the difficulty of factoring n, which should be the product of two

very large distinct primes p and q. This relation between factoring and cryptography is one

reason why interest in evaluating the practical difficulty of the integer factorization problem

in the mathematical community has increased in recent years. Currently the limits of our

factoring capabilities lie around 130 decimal digits [Lenstra]. This is why having a very large

n, ideally larger than this upper bound of 130, makes RSA practically unbreakable even with

modern computing power. Earlier we saw the sizes of n typically used in practice for the

RSA algorithm, namely 2048, 3072, or 4096 bit keys. These bit sizes correspond to about 617,

17

925, and 1233 decimal digits, respectively, which are obviously all significantly longer than 130

decimal digits. This is precisely why RSA is such a secure cryptosystem. On the other hand,

although integer factorization is considered very difficult, especially under the constraints of

computing power, there are a few integer factorization methods that we should consider.

The most obvious method for integer factorization involves trial and error. Trial division

consists of systematically testing whether n is divisible by any smaller number. However, for

efficiency’s sake, it would only make sense to see if n were divisible by any prime numbers

smaller than it. This is because if we test some number x and find it is not a factor, than any

multiple of x will also not be a factor of n. Furthermore, the factors tried need go no higher

than
√
n, since if n were divisible by some number r, then n = r× s, and if s were smaller than

r, n would have earlier been detected as being divisible by s or a prime factor of s. There are

several issues with this method, specifically when working with n values as large as the ones

employed in the RSA algorithm. To try and make the trial and error method more efficient we

would have to only test prime numbers, but when we are looking at larger and larger sets of

possible factors we have to be able to determine which numbers are actually prime before we

test them. This brings us back to the difficulty and efficiency issues associated with primality

testing. Time is also an issue, as we add more and more digits to n, the time to carry out trial

divisions increases exponentially. For these reasons, the trial divisions method is considered

extremely inefficient and an insufficient method when dealing with such large n values.

Another well-known method that is fairly simple is Fermat’s factorization method. This

particular method is extremely useful for factoring integers that are the product of two very

large distinct primes that are close together. Let n = pq be the product of two distinct primes,

and suppose that we would like to determine the values of p and q from n. This is the heart

of the security of RSA. If someone were to find the p and q used in the algorithm, the security

would instantly collapse. If p and q were relatively close together, then even if they were both

very large, we could determine them fairly quickly using Fermat’s factorization as follows. Let

x = p+q
2 and y = p−q

2 . Then n = pq = x2−y2 = (x+y)(x−y). Since n has prime factors p and

q, it follows that p and q would have to be x + y and x − y. To determine p and q, we would

only have to find the values of x and y. In order to do this, we could begin by assuming that x

is the smallest integer larger than
√
n. Since n = x2− y2, if we have assumed the correct value

18

of x, then it will follow that x2−n will be the perfect square y2. If this is not the case, then we

would know that we had assumed an incorrect value for x, and we could simply increase x by

one and repeat the process until the correct x is found. If p and q are relatively close together,

then the number of times that this process would have to be repeated would be relatively small

[Klima, Sigmon]. This is exactly why this method is useful in this case.

As an example of Fermat’s factorization method, suppose we wanted to find the two prime

factors of n = pq = 108371. The smallest integer larger than
√

108371 is 330, so this would

be our first x. But then 3302 − n = 529 = 232, and so we have found the correct values for x

and y on the first trial, x = 330 and y = 23. The prime factors of n are then x+ y = 353 and

x − y = 307. Because these factors are so close to each other, we were able to find them very

quickly.

If we use an n created with primes separated by a little more distance, say n = 69841, then

we will most likely have to repeat the process more than once. The smallest integer larger

than
√

69841 is 265, which will be our first x. Then 2652 − n = 384, which is not a perfect

square. This means x = 265 is not correct, and so now we try x = 266. Then 2662 − n = 915,

which is also not a perfect square. With x = 267, we have 2672 − n = 1448, which is also

not a perfect square. With x = 268, we have 2682 − n = 1983 which is also not a perfect

square. With x = 269, we have 2692 − n = 2520 which is also not a perfect square. With

x = 270, we have 2702 − n = 3059, which is also not a perfect square. With x = 271, we have

2712 − n = 3600 = 602, and so we have finally found the right values for x and y, 271 and 60,

respectively. Our prime factors for 69841 are then x + y = 331 and x − y = 211. You can see

that the farther apart p and q are, the more repetitions of the factorization method are needed

to find the right x and y values.

Another well-known method for integer factorization is Pollard’s rho method, which is ba-

sically a modification of the trial division method that increases the odds of finding a factor of

n. The trial division method essentially chooses one number at a time and tests to see if that

number is indeed a factor of n. Pollard’s rho method chooses k numbers, {x1, . . . , xk}, and

tests whether gcd(|xi − xj |, n) > 1. In other words, we ask if xi − xj and n have a non-trivial

factor in common. This at once increases the number of chances for successes. For example,

if we ask how many numbers divide n = pq, we have just two: p and q. But if we ask how

19

many numbers satisfy gcd(x, n) > 1, we have many more: p, 2p, . . . , (q − 1)p, q, 2q, . . . ,

(p − 1)q, pq. So, for Pollard’s rho algorithm, we generate random numbers one by one and

check two consecutive numbers. This process is repeated until a factor is found. A function f

is used that will generate pseudorandom numbers. In other words, we will keep applying f to

generate numbers that seem random for the purpose of this algorithm. One such function that

has the pseudorandom property is f(x) = x2 + a mod n. We start with x1 = 2 or some other

number. We then find x2 = f(x1), x3 = f(x2), etc., following the general rule xn+1 = f(xn)

[Pollard’s Rho]. If we use n = 55 as an example, Pollard’s rho method can be carried out as

follows with f(x) = x2 + 2 mod 55:

xn xn+1 gcd(|xn − xn+1|, n)

2 6 1

6 38 1

38 16 11

The last line in this table tells us that 11 is a factor of 55. From that, we can determine the

other factor by calculating 55
11 = 5.

The number n = 55 is obviously very small with small p and q, so we can show the Pollard’s

rho method with a slightly larger n, say n = 707 with f(x) = x2 + 1 mod 707:

xn xn+1 gcd(|xn − xn+1|, n)

2 5 1

5 26 7

The last line in this table tells us that 7 is a factor of 707. From that, we can determine the

other factor by calculating 707
7 = 101.

Even though the value of n in our second example of Pollard’s rho method was larger than

in the first example, the method found the factor just as quickly. This is because Pollard’s

rho method is very efficient for factoring fairly small numbers or large n values with one factor

being significantly smaller than the other. This is in contrast to Fermat’s factorization method,

20

which was optimized when the factors p and q were relatively close together. Still, this method

is quite inefficient when dealing with the massive n values used in practice with the RSA

cryptosystem. One of the problems with Pollard’s rho method is that it can generate sequences

that cycle and hence never produce a factor. Floyd’s cycle finding algorithm, and later Brent’s

cycle finding algorithm have been integrated into Pollard’s rho method to prevent these issues

[Pollard’s Rho].

As a final note regarding integer factorization, in comparison of the problems of primality

testing and integer factorization, factoring a known non-prime integer is in general significantly

more time-consuming than finding a prime of approximately the same size. This is really what

makes RSA useful in practice. As we have mentioned, the security of RSA is based on the

apparent difficulty of factoring a number that is the product of two very large distinct primes.

To be more precise, the security of RSA is based on the fact that it would apparently be much

more time-consuming for an outsider to factor the publicly known value of n = pq than for the

intended recipient of the message to choose p and q [Klima, Sigmon].

7 Modular Exponentiation

Encrypting and decrypting messages using the RSA cryptosystem securely requires modular

exponentiation with extremely large bases and exponents. Say we needed to raise the following

ciphertext:

39705667751051336812284136334817473485289

to the following power:

54299300950841826990071853678997985400035

and reduce the result mod the following modulus:

200033699955714283345172521584008468989639.

Even if we used the fastest computer on the planet, completing this calculation by actually

multiplying the ciphertext by itself repeatedly with a total number of factors equal to the

power would essentially take forever [Klima, Sigmon]. When implementing RSA, there is a

21

necessity to encrypt and decrypt messages efficiently so that the processes can be carried out in

a reasonable length of time rather than essentially taking forever. There are much more efficient

ways to do these kinds of modular exponentiation calculations that can be done very quickly

and allow us to avoid efficiency issues. For example, consider the first decryption calculation

5081281445981 mod 1524599 in Example 2 of Section 2. This calculation can be done in a more

efficient manner than actually multiplying 508128 by itself repeatedly with a total of 1445981

factors. To do this calculation efficiently, we first find the values of 5081282
i

mod 1524599 for i =

1, 2, . . . , 20. So for P = 508128 and M = 1524599, we begin by computing P 2, P 4, P 8, ..., P 220 ,

and reducing each result modulo M . Note that each P 2i mod M can be found by squaring

P 2i−1
mod M , so finding these values requires a total of only 20 multiplications. The modular

exponentiation for our example could then be completed by calculating the following:

P 1445981 mod M = P 1048576+262144+131072+4096+64+16+8+4+1 mod M

= P 220+218+217+212+26+24+23+22+20 mod M

= P 220P 218P 217P 212P 26P 24P 23P 22P 20 mod M.

This would only require 8 additional multiplications, so this technique could be used to perform

the entire modular exponentiation with a total of only 20 + 8 = 28 multiplications. This is

obviously a vast improvement over the number of multiplications required to find the result by

multiplying P by itself repeatedly with a total of 1445981 factors.

The technique for efficiently calculating P a mod M described in the previous paragraph

will in general require at most 2 log2(a) multiplications. So even for the massive modular

exponentiation described at the beginning of this section, the technique would require at most

the following number of multiplications [Klima, Sigmon]:

2× log2(54299300950841826990071853678997985400035) ≈ 270.

Again, this is obviously a tremendous improvement over multiplying the base by itself repeatedly

with a total of the following number of factors:

54299300950841826990071853678997985400035.

For the Python simulator created for this thesis, a technique for efficient modular exponentiation

22

that is predefined in Python was employed. This technique is almost certainly the technique

described in this section.

8 Digital Signatures

RSA being public-key can lead to issues in the verification of the sender of an encrypted message.

If we assume that our encryption exponent a and value for n are made public, we typically

assume that this information could be accessed by anyone, and not just the intended point of

correspondence. If we suppose that there is a group of people who wish to communicate over

insecure lines of communication using RSA, and each person has their own secret values of p

and q, then each person could make public their a and n. Upon receiving an encrypted message

however, the issue comes in determining if the message came from the person claiming to have

sent it. This is where the concept of digital signatures comes in.

Suppose we want to send a secret message, P , to a colleague across an insecure line of

communication. Assume that our personal modulus n1 and encryption exponent a1 are public

and our decryption exponent b1 is kept secret while our colleague has made public their personal

modulus n2 and encryption exponent a2 while their decryption exponent b2 is kept secret.

Assume also that n1 < n2. Normally, to encrypt the plaintext P to send to our colleague

we would calculate P a2 mod n2. To incorporate a digital signature, we could instead apply

our own decryption exponent and modulus first by calculating P1 = P b1 mod n1, and then

send to our colleague the ciphertext C1 formed by C1 = P a2
1 mod n2. Our colleague could

then easily decrypt this ciphertext by first applying their decryption exponent and modulus to

obtain P1 = Cb2
1 mod n2, and then using our public encryption exponent and modulus to obtain

P = P a1
1 mod n1. Since the decryption exponent b1 used before the encryption is only known to

us, our colleague would then know that the message could have only come from us. Because it

has the effect of authenticating the message, applying our own decryption exponent and modulus

in the encryption of a message is sometimes called signing the message [Klima, Sigmon].

Example: Encryption with a Digital Signature

To send our colleague the message Meeting time changed to 12! we would first convert it to

its numerical equivalent under the ASCII correspondences, resulting in the following numerical

23

plaintext P :

077101101116105110103032116105109101032099104097110103101100032116111032049050033.

Now, say that we have chosen p = 12517 and q = 154897, and formed n1 = 1938845749,

a1 = 19386785, and b1 = 1595863265. Suppose our colleague has chosen p = 18013 and

q = 200003, and formed n2 = 3602654039, a2 = 36024365, and b2 = 3292142165. Note that

n1 < n2. The first step will be to split P into blocks smaller than n1, and apply our own

decryption exponent b1 and modulus n1 to these blocks to form blocks for P1. Note that since

n2 is 10 digits long, we can group three plaintext characters at a time:

0771011011595863265 mod 1938845749 = 1562102271

1161051101595863265 mod 1938845749 = 1920418988

1030321161595863265 mod 1938845749 = 1353617224

1051091011595863265 mod 1938845749 = 158917195

0320991041595863265 mod 1938845749 = 1315419167

0971101031595863265 mod 1938845749 = 529371812

1011000321595863265 mod 1938845749 = 1346893900

1161110321595863265 mod 1938845749 = 1268387943

0490500331595863265 mod 1938845749 = 1402501352.

Now we can form blocks for the ciphertext C1 by raising these P1 blocks to the a2 mod n2:

156210227136024365 mod 3602654039 = 2536616313

192041898836024365 mod 3602654039 = 1413314080

135361722436024365 mod 3602654039 = 2529883408

15891719536024365 mod 3602654039 = 3493306487

131541916736024365 mod 3602654039 = 3175216239

52937181236024365 mod 3602654039 = 1443314018

134689390036024365 mod 3602654039 = 1688039043

24

126838794336024365 mod 3602654039 = 1613024412

140250135236024365 mod 3602654039 = 2381003738.

Our colleague can start the decryption process by raising these C1 blocks to the b2 mod n2.

Note that the results are the P1 blocks:

25366163133292142165 mod 3602654039 = 1562102271

14133140803292142165 mod 3602654039 = 1920418988

25298834083292142165 mod 3602654039 = 1353617224

34933064873292142165 mod 3602654039 = 158917195

31752162393292142165 mod 3602654039 = 1315419167

14433140183292142165 mod 3602654039 = 529371812

16880390433292142165 mod 3602654039 = 1346893900

16130244123292142165 mod 3602654039 = 1268387943

23810037383292142165 mod 3602654039 = 1402501352.

Our colleague can then complete the decryption process by raising these P1 blocks to the a1

mod n1. Note that the results are the P blocks:

156210227119386785 mod 1938845749 = 077101101

192041898819386785 mod 1938845749 = 116105110

135361722419386785 mod 1938845749 = 103032116

15891719519386785 mod 1938845749 = 105109101

131541916719386785 mod 1938845749 = 032099104

52937181219386785 mod 1938845749 = 097110103

134689390019386785 mod 1938845749 = 101100032

126838794319386785 mod 1938845749 = 116111032

140250135219386785 mod 1938845749 = 049050033.

25

Since, the original plaintext was recovered, our identity was authenticated to our colleague. If

the original plaintext was unable to be recovered using our public encryption exponent, our

colleague would know that we were not the actual originator of the message.

Recall that we assumed the condition for this digital signature scheme that our modulus

n1 was less than our colleague’s modulus n2. This is because if n2 < n1, the P1 blocks could

potentially be larger than n2, and thus not be recoverable in the first decryption step. To

avoid this potential problem, if n2 < n1, we could just reverse the order of the encryption and

signing calculations. That is, in encryption, instead of using b1 and n1 first and then a2 and

n2 second, we could use a2 and n2 first and then b1 and n1 second. This would guarantee that

the calculations could be reversed correctly.

9 Python Simulator Description

Some of the features included in the RSA Python simulator created for this project are outlined

throughout this thesis. This section synthesizes everything into an overview of what exactly

the simulator does and how it simulates the RSA cryptosystem. The core of the program lives

in the RSA method. This is where most of the actual RSA simulations are taking place. To

supplement this main method, five additional methods are included. These are a toNumber

method, a toLetter method, a euclidean method, an isprime method, and a gcd method. The

toNumber method takes a string as a parameter and uses Python’s predefined “ord” function

to convert characters into their ASCII representations. For ASCII representations that are less

than 100, a leading 0 is added to make sure all ASCII representations are three digits in length.

Similarly, the toLetter method takes in a string of numbers which are then examined three

digits at a time and converted to the character representation using Python’s predefined “chr”

function. The euclidean method is a coded version of the Euclidean algorithm that is used in

the RSA process to find the decryption exponent b that satisfies ab = 1 mod m. In other words

the euclidean method finds the multiplicative inverse of a given a when working with a given

mod m. Both of these values are parameters to the euclidean method. The next method is the

primality test I chose to implement, isprime. As mentioned earlier I used the Fermat primality

test and tested about 40 bases. The method will return false if the number given as a parameter

26

is found to be composite, and true otherwise. The gcd method is a method to compute the gcd

of two numbers which are given as parameters.

Within the RSA method itself, the simulator begins by asking the user if they are the sender

or the receiver in the given scenario.

Figure 1: Simulation Prompt

This is essentially asking whether users want to encrypt or decrypt a message. If the user indi-

cates they are the sender, then they will be prompted to enter the public encryption exponent

a and the public modulus n of the person they are sending a message to, and the plaintext

message they want to send.

Figure 2: Simulation Encryption with Example 2

The simulator also requires n > 126 so that the ASCII representations of plaintext characters

could be used.

27

Figure 3: Simulation Requirement for n

The simulator is designed to go through the process of finding the right number of groupings

for the plaintext and then encrypting these groupings using the information provided by the

user. The resulting ciphertext is then returned to the user instantly.

If the user had indicated that they were the receiver, the simulator asks whether they want

to decrypt a message or create parameters.

Figure 4: Simulation Receiver Options

If the user wishes to create parameters, the user is asked for numbers close to what they would

like their values of p and q to be. With these inputs, the isprime method is used to find the

smallest prime numbers larger than the given inputs. These primes are shown to the user as

their p and q. The resulting value of n is also shown as well as a possible value for a to use

as their public encryption exponent. This creates all of the parameters needed in order for

someone to begin receiving messages.

28

Figure 5: Simulation Parameters

If the user wishes to decrypt a message, the user is prompted to enter their values for p, q, and

a. Notice they are not prompted for the decryption exponent because this is calculated within

the program using the euclidean method. This makes it so that the user never has to calculate

any of these values on their own, a valid a can be given if they create parameters, and they do

not have to worry about calculating the value of b in order to decrypt a message. After these

prompts, the user can enter the ciphertext. The way encrypted messages are returned by the

simulator is in blocks of numbers separated by commas, so this is required of ciphertexts to

be decrypted as well. Once all of this information is gathered from the user, the ciphertext is

decrypted using the decryption algorithm. The plaintext is then returned to the user.

29

Figure 6: Simulation Decryption with Example 2

The entire simulator runs on an infinite loop, so as long as the user does not enter the word

“exit” after they have completed an interaction, the program will start again from the beginning.

10 Python Simulator Code

de f RSA() :

end = ””

whi le (end != ” e x i t ”) :

p r i n t ”Are you the sender or the r e c e i v e r ?”

p r in t ” Enter s f o r sender or r f o r r e c e i v e r . ”

ans = raw input ()

c t ex t = ””

whi le (ans != ” s ” and ans != ” r ”) :

p r i n t ” Error ! Enter s f o r sender or r f o r r e c e i v e r . ”

ans = raw input ()

30

i f (ans == ” s ”) :

p r i n t ” Enter the value f o r a”

a = i n t (raw input ())

p r i n t ” Enter the value f o r n”

n = i n t (raw input ())

whi l e (n < 1 2 7) :

p r i n t ” Error ! n must be at l e a s t 127”

p r in t ” Enter the value f o r n”

n = i n t (raw input ())

p r i n t ” Enter the p l a i n t e x t you would l i k e to send ”

ptext = raw input ()

ptext = toNumber (ptext)

#determine l ength o f groupings to encrypt

i f (l en (s t r (n)) % 3 == 0) :

i f (l en (s t r (n)) == 3) :

l ength = 3

e l s e :

l ength = len (s t r (n)) − 3

e l s e :

i = 3

whi l e (i + 3 < l en (s t r (n))) :

i = i + 3

length = i

plength = len (ptext)

numgroups = plength / l ength

l e f t o v e r = plength % length

31

f o r i in range (0 , numgroups ∗ l ength , l ength) :

encrypt = ””

f o r j in range (i , i + length) :

encrypt += ptext [j]

encrypt = i n t (encrypt)

encrypt = s t r (pow(encrypt , a , n))

whi l e (l en (encrypt) < l ength) :

encrypt = ”0” + encrypt

encrypt += ” ,”

c t ex t += encrypt

encrypt = ””

i f (l e f t o v e r != 0) :

f o r i in range (l e f t o v e r) :

encrypt += ptext [(numgroups∗ l ength) + i]

pad = length − l e f t o v e r

f o r i in range (pad) :

encrypt += ”0”

encrypt = i n t (encrypt)

encrypt = s t r (pow(encrypt , a , n))

whi l e (l en (encrypt) < l ength) :

encrypt = ”0” + encrypt

c t ex t += encrypt

p r i n t ”The r e s u l t i n g c i p h e r t e x t i s : ” , c t ex t

p r i n t

32

e l s e :

p r i n t ”Are you c r e a t i n g parameters or

decrypt ing a message you r e c e i v e d ?”

p r in t ” Enter p to c r e a t e parameters and d to decrypt . ”

cho i c e = raw input ()

whi l e (cho i c e != ”p” and cho i c e != ”d ”) :

p r i n t ” Error ! Enter p to c r e a t e parameters or d to decrypt . ”

cho i c e = raw input ()

i f (cho i c e == ”p ”) :

#Help c r e a t e primes p and q

pr in t ” Enter a number , the next prime a f t e r t h i s number”

p r in t ” w i l l be used as the prime f o r p . ”

pp = i n t (raw input ()) + 1

whi le (i sp r ime (pp) != True) :

pp += 1

pr in t ” Enter a number , the next prime a f t e r t h i s number”

p r in t ” w i l l be used as the prime f o r q . ”

qq = i n t (raw input ()) + 1

whi le (i sp r ime (qq) != True) :

qq += 1

pr in t ”Your prime p i s ” , pp

pr in t ”Your prime q i s ” , qq

p r in t ”Using these va lue s f o r p and q ,

the n value to send i s ” , pp∗qq

#Help f i n d an a s . t . gcd (a ,m) = 1

33

mm = (pp − 1) ∗ (qq − 1)

aa = max(i n t (mm ∗ . 0 1) , 10)

whi l e (gcd (aa , mm) != 1 or (aa <= pp or aa <= qq)) :

aa += 1

pr in t ”A p o s s i b l e a value i s : ” , aa

i f (cho i c e == ”d ”) :

p r i n t ” Enter the value o f p”

p = i n t (raw input ())

whi l e (i sp r ime (p) != True) :

p r i n t ” Error ! p value i s not prime . ”

p r i n t ” Enter another va lue f o r p . ”

p = i n t (raw input ())

p r i n t ” Enter the value o f q”

q = i n t (raw input ())

whi l e (i sp r ime (q) != True) :

p r i n t ” Error ! q va lue i s not prime . ”

p r i n t ” Enter another va lue f o r q . ”

q = i n t (raw input ())

m = (p−1) ∗ (q−1)

p r i n t ” Enter the value o f a”

a = i n t (raw input ())

whi l e (gcd (a ,m) != 1) :

p r i n t ” Error ! a must be r e l a t i v e l y prime to n . ”

p r i n t ” Enter a v a l i d a . ”

a = i n t (raw input ())

p r i n t ” Enter the c i p h e r t e x t you r e c e i v e d . ”

34

pr in t ” I f c i p h e r t e x t i s separated by commas ,

ente r the groupings i n c l u d i n g commas . ”

p r i n t ”Do not ente r any spaces between numbers or commas . ”

c = raw input ()

c t ex t = c . s p l i t (” , ”)

n = p∗q

m = (p−1)∗(q−1)

ptext = ””

b = euc l i d ean (a , m)

i f (b < 0) :

b = b + m

p l a i n t e x t = [”” f o r i in range (l en (c t ex t))]

b lock = 0

f o r i in range (l en (c t ex t)) :

p l a i n t e x t [i] = s t r (pow(i n t (c t ex t [i]) , b , n))

i f (l en (p l a i n t e x t [i]) > block) :

b lock = len (p l a i n t e x t [i])

temp = ””

f o r i in range (l en (c t ex t)) :

i f (l en (p l a i n t e x t [i]) < block) :

temp = ””

i f (l en (p l a i n t e x t [i]) % 3 != 1) :

temp += ”0” + p l a i n t e x t [i]

i f (l en (temp) < block) :

j = block − l en (temp)

f o r k in range (j) :

temp += ”0”

ptext += temp

35

e l s e :

ptext += p l a i n t e x t [i]

#pr in t ptext

p r i n t ”The p l a i n t e x t i s : ” , t oLe t t e r (ptext)

p r i n t ””

p r in t ”To run the s imu la t i on again , p r e s s ente r . ”

p r i n t ”To e x i t the s imulat ion , ente r the word e x i t . ”

end = raw input ()

de f toNumber (s) :

num = ””

hold = 0

f o r i in range (l en (s)) :

hold = ord (s [i])

i f (l en (s t r (hold)) < 3) :

num += ”0” + s t r (hold)

e l s e :

num += s t r (hold)

re turn num

def t oLe t t e r (s) :

l e t t e r = ””

f o r i in range (0 , l en (s) − 2 , 3) :

cur r ent = s [i] + s [i +1] + s [i +2]

l e t t e r += chr (i n t (cur rent))

re turn l e t t e r

36

de f euc l i d ean (a , m) :

q = [0 , 0]

r = [m, a]

u = [1 , 0]

v = [0 , 1]

i = 2

rem = 0

whi le (rem != 1) :

rem = m % a

r . i n s e r t (i , rem)

quo = i n t (m/a)

q . i n s e r t (i , quo)

u . i n s e r t (i , u [i −2] − u [i −1]∗q [i])

v . i n s e r t (i , v [i −2] − v [i −1]∗q [i])

m = a

a = rem

i = i+1

b = v [l en (v) − 1]

re turn b

de f i sp r ime (n) :

a = 2

f o r i in range (4 0) :

whi l e (gcd (a , n) != 1) :

a += 1

i f (pow(a , n−1, n) != 1) :

r e turn Fal se

a += 1

37

re turn True

de f gcd (x , y) :

whi l e (x != 0) :

rem = y % x

fac = y / x

y = x

x = rem

return y

RSA()

References

[Rabin-Miller] “The Rabin-Miller Primality Test.” Web. 19 Mar. 2017.

http://home.sandiego.edu/ dhoffoss/teaching/cryptography/10-Rabin-Miller.pdf

[Lenstra] “Integer Factoring.” Web. 19 Mar. 2017.

https://www.fdi.ucm.es/profesor/m alonso/Documentos/factorizacion/arjlensfac.pdf

[Klima, Sigmon] Klima, Richard E., and Neil Sigmon. Cryptology: Classical and Modern with

Maplets. Boca Raton, FL: CRC Press, 2012. Print.

[Pollard’s Rho] “A Quick Tutorial on Pollard’s Rho Algorithm.” Web. 19 Mar. 2017.

https://www.cs.colorado.edu/ srirams/courses/csci2824-spr14/pollardsRho.html

38

